807 research outputs found

    Poisson and Porter-Thomas Fluctuations in off-Yrast Rotational Transitions

    Full text link
    Fluctuations associated with stretched E2 transitions from high spin levels in nuclei around 168^{168}Yb are investigated by a cranked shell model extended to include residual two-body interactions. It is found that the gamma-ray energies behave like random variables and the energy spectra show the Poisson fluctuation, in the cranked mean field model without the residual interaction. With two-body residual interaction included, discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE type fluctuations for both energy levels and transition strengths(Porter-Thomas fluctuations).Comment: 21 pages, phyzzx, YITP/K-99

    Fidelity and coherence measures from interference

    Get PDF
    By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g., spin or polarization) of the interfering particle, preparing it in states ρA or ρB in the respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as well as the locality or nonlocality of the preparations, but otherwise depends only on the states ρA and ρB and not the individual preparation processes themselves. This allows us to define interferometric measures which probe locality and correlation properties of spatially or temporally separated processes, and can be used to differentiate between processes that cannot be distinguished by direct process tomography using only the internal state of the particle

    Correlations in Nuclear Masses

    Full text link
    It was recently suggested that the error with respect to experimental data in nuclear mass calculations is due to the presence of chaotic motion. The theory was tested by analyzing the typical error size. A more sensitive quantity, the correlations of the mass error between neighboring nuclei, is studied here. The results provide further support to this physical interpretation.Comment: 4 pages, 2 figure

    Spreading widths of giant resonances in spherical nuclei: damped transient response

    Full text link
    We propose the universal approach to describe spreading widths of monopole, dipole and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei 132^{132}Sn, 208^{208}Pb and 310^{310}126. Our results demonstrate that the universal approach enables to describe gross structure of the spreading widths of the considered giant resonances.Comment: 6 pages, 2 figure

    Correlation studies of fission fragment neutron multiplicities

    Full text link
    We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from 235^{235}U(nth_{\rm th},f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure

    Collective motion in quantum diffusive environment

    Full text link
    The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many-body system, a set of coupled dynamical equations for the collective classical variable and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed.Comment: 15 pages, 5 figure
    corecore